Abhängigkeit des elektrischen Widerstandes vom Leiter (RS)

1. Aufgabe:

Untersuche, wie der elektrische Widerstand eines Drahtes von seiner Länge abhängt.

Miss dazu mehrmals den Widerstand entsprechend der Tabelle.

Länge I des	Experimentelle	Widerstand R
Drahtes in m	Realisierung – kleine Steckbretter	in Ω
1	1 Drahtwiderstand (Konstantan)	
2	2 Drahtwiderstande in Reihe	
3		

Zeichne ein R-I-Diagramm	Ergänze!
	Je größer die Länge des Leiters, desto
	Genauer gilt:

2. Aufgabe:

Untersuche, wie der elektrische Widerstand eines Drahtes von seiner Querschnittsfläche abhängt.

Miss dazu mehrmals den Widerstand entsprechend der Tabelle.

Querschnitt A des	Experimentelle	Widerstand R
Drahtes	Realisierung - großes Steckbrett	in Ω
1 – fach	1 Drahtwiderstand (Konstantan)	
2 – fach	2 Drahtwiderstande parallel	
3 – fach		

Zeichne ein R-A-Diagramm	Ergänze!
	Je größer der Querschnitt des Drahtes, desto
	Genauer gilt:

3. Aufgabe:

Untersuche, wie der elektrische Widerstand eines Drahtes vom Stoff, aus dem er besteht abhängt! Miss dazu mehrmals den Widerstand entsprechend der Tabelle!

Material	Experimentelle	Widerstand
	Realisierung – 1 kleines Steckbrett	in Ω
Konstantan	1 Drahtwiderstand aus Konstantan	
Eisen	1 Drahtwiderstand aus Eisen	
Kupfer	1 Drahtwiderstand aus Kupfer	

Welches Material ist der beste Leiter?	
Welches Material ist das beste Widerstandsmaterial?)

4. Aufgabe:

Fülle mithilfe deines Tafelwerkes (Tabelle "Spezifische elektrische Widerstände") die folgende Tabelle aus!

Material	Widerstand eines 1 m langen Drahtes mit dem Querschnitt 1mm² aus diesem Material	Verwendung zur
Konstantan		Herstellung von
Nickelin	0,40 Ω	
Eisen		
Kupfer		
Silber		
Gold		

5. Aufgabe:	Ergänze den Lückentext mithilfe von Lb. S. 14 / 15.
Die Abhängigk	eit vom Stoff wird durch die stoffspezifische Größe
(Stoffkonstante)ρ beschrieben.

Sie wird in angegeben.

z.B. für Konstantan: bedeutet: ein 1 m langer Konstantandraht vom Querschnitt 1 mm² hat einen Widerstand von 0,5 Ω .

Der Widerstand eines Leiters lässt sich mit der Formel:

	berechnen (Widerstandsgesetz).
--	--------------------------------

6. Aufgabe:

Wie viel Ohm hat wohl der Draht?

Löse die Aufgabe erst durch Überlegung und dann durch Berechnen mit der Formel.

